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We examine the effects of the full Dresselhaus spin-orbit coupling on laterally confined quantum wire states.
An analysis of the relative contributions due to linear, quadratic, and cubic Dresselhaus spin-orbit terms on the
energy levels, spin splitting, and spin polarization has been carried out. The effects of wire cross-sectional
geometry shapes on the electronic structure are explored. In particular we compared the results of semicylin-
drical and cylindrical confinements and have found important differences between the spin degeneracy of the
ground-state level and the spin-polarization dependence on sign inversion of the free linear momentum quan-
tum number along the wire axis. Different from other symmetries, in both cases here considered, the stronger
spin-splitting effects come from the quadratic Dresselhaus term. We report ideal conditions for realization of
spin-field filter devices based on symmetry properties of the spin splitting of the ground state in semicylindrical
quantum wires.

DOI: 10.1103/PhysRevB.79.155306 PACS number�s�: 73.21.Hb, 71.70.Ej, 73.22.Dj, 72.25.Dc

I. INTRODUCTION

Bulk spin-orbit interaction �SOI� effects of zinc-blende
crystals have been discussed in earlier theoretical papers.1–3

They break the spin degeneracy of the Bloch states for every
wave vector k in the absence of a center of inversion and
lead to the energy spin splitting of the electron and/or hole
states without lifting Kramer’s degeneracy in the absence of
an external magnetic field. In low dimensional heterostruc-
tures, this spin splitting can be tuned by external field and
classified into two effects either induced by bulk inversion
asymmetry �BIA� in zinc-blende crystal structures, known as
Dresselhaus SOI, and/or by structure inversion asymmetry
�SIA� of the confinement potential.

The intrinsic form of BIA SOI which affects the energy
level separation of carrier states in zinc-blende nanostruc-
tures can be detected via spin-polarized optical and transport
measurements. Recently, the BIA-induced spin splitting has
been detected experimentally through the Shubnikov–de
Haas effect in uniaxially strained bulk InSb and by analyzing
the precession of the spin polarization of photoexcited elec-
trons along the �110� GaAs surfaces.4 In turn, SIA-induced
spin splitting has been detected via analysis of optical polar-
ized emissions from electron and hole charge densities accu-
mulated in layers of GaAs-AlAs tunneling diodes5 under ap-
plied parallel electric and magnetic fields.

In this work we present a detailed k ·p analysis of the
electronic structure in semiconductor quantum wires
�QWRs� of different geometrical shapes after including all
Dresselhaus SOI terms in the Hamiltonian for the conduction
band states which contain the full symmetry of the
crystal.3,6,7 QWRs have attracted attention because of their
potential applications in spintronic and optoelectronic de-
vices. The study of these systems allows us to understand the
role played by dimensionality,8 by electron-electron
interaction,9 as well as by size and shape quantization effects
on their electronic properties.10,11

In general, the Dresselhaus SOI coupling has been intro-
duced to the electronic structure of nanostructures by taking

the mean values of the wave-vector operators k̂z
2 and k̂z, as

usually done in quantum dots12 �QD’s� or in a two-
dimensional �2D� electron gas in quantum wells �QW’s�.4 In
most cases, �k̂z�=0 and such approaches consider only ef-
fects due to in-plane k̂-linear terms proportional to the in-
plane k components �kx ,ky�.3,8,13,14 For other types of con-
finements, as well as for materials with a large values of SOI
parameters, the k̂-cubic term must be included in the total
Hamiltonian. Recently, the effect of the k-cubic term has
appeared to be relevant even for GaAs-AlGaAs, a system
with very small SOI parameters.15,16 Moreover and due to
the translational invariance symmetry of one-dimensional
�1D� quantum systems along the z axis, the BIA quadratic

term, proportional to k̂z, should also have a relevant contri-
bution to the electronic subband structure of QWRs.

Later on we shall discuss why SOI quadratic and cubic
terms are essential to determine eigenenergies, spin-splitting
energies, and spin polarizations of electrons in the conduc-
tion band of QWRs. By changing the ratio between SOI and
quantum confinement strengths we can follow the relative
influences of each BIA term on the electronic spectra. Fur-
thermore, besides the qualitative differences between circular
and semicircular cross-section QWRs, we will also show that
any symmetry reduction leads to a set of eigenstates affected
by different combinations of SOI linear, quadratic, and cubic
Dresselhaus contributions. Hence, symmetry considerations
to determine the Hilbert space for the solutions used in the
expansion of the spinor states and the relative effects be-
tween different SOI terms become the main issue under dis-
cussion in this work. In this study, we will focus on the
interplay between linear, quadratic, and cubic BIA contribu-
tions to the spin-splitting energy and the corresponding spin
polarization of the ground state of nanoscopic QWRs. In our

analysis we have found that the k̂-linear and k̂-cubic terms
keep the degeneracy of the eigenenergies in a semicylindrical
QWR and, in consequence, their contribution to the spin-
splitting energy is negligible. Finally, we addressed the ef-
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fects associated to the reduction in the cylindrical symmetry
on the dependence of the ground-state energy on the sign of
wave vector kz along the propagation direction and its nota-
bly high degree of spin polarization at low velocity values.

II. INFINITE QUANTUM WIRE SYSTEMS

The total single-particle Hamiltonian for the conduction
band of a QWR, including all Dresselhaus SOI contribu-
tions, can be written as

H = H0 + HD, �1�

where H0= ��2k̂2 /2m�+V�r ,z��I is the Hamiltonian for un-
coupled spin-up and spin-down electron states, I is the 2
�2 identity matrix, V�r ,z� is the total spatial confinement
for Cartesian coordinates r= �x ,y� and z along the wire axis
�see Fig. 1�, HD=��� · �̂� is the BIA Hamiltonian, m� and �
are the electron effective mass and Dresselhaus SOI param-
eter for the material, respectively, �= ��x ,�y ,�z� is the Pauli
spin-vector matrix, and �̂ is a vector operator with �̂x

= �k̂yk̂xk̂y − k̂zk̂xk̂z� and cyclic permutations for the other �̂y
and �̂z components and of the associated linear momentum

operator k̂= �k̂x , k̂y , k̂z�. The effective full BIA Hamiltonian
can be separated into three contributions with the form

HD = E0a3� H2D H1D + H3D

H1D
† + H3D

† − H2D
� , �2�

where H1D=−�Dk̂z
2k̂−, H2D=− 1

2�Dk̂z�k̂−
2 + k̂+

2�, H3D
=− 1

8�D	k̂+ , �k̂+
2 − k̂−

2�
, and 	Â , B̂
= 1
2 �ÂB̂+ B̂Â�. These terms

are, respectively, the linear, the quadratic, and the cubic
Dresselhaus SOI contributions written in terms of operators

k̂�= k̂x� ik̂y multiplied by the dimensionless parameter �D
=� / �a3E0�, where E0=�2 / �2m�a2� is the energy scale for the
QWR confinement inside a cylinder �or semicylinder� of ra-
dius a �see Fig. 1�. For free motion along the z axis

�V�r ,z��V�r��, we can show that the commutator �k̂z ,H�

=0 thus, the eigenvalue of k̂z operator �kz� becomes a good
quantum number. Under these conditions, the Schrödinger
equation for H is separable, in the entire level spectrum, as a
product of purely in-plane localized function on the radial
coordinate r times free motion function along z axis. For
mathematical simplicity we will assume a hard-wall confin-
ing potential model with V�r��0 inside the region �r��a
and infinite barrier outside the wire with V��r�	a�=
. With-
out SOI, the eigenenergies of the Hamiltonian in Eq. �1�
become degenerate and correspond to the spinor eigenfunc-
tions, ��+���

�f0��+�
0 � and ��−��� 0

�f0��−� �, where �−� and �+ � are
the electron spin-up and spin-down eigenstates of the z com-

ponent of the spin operator, Ŝz. The ket �f0� can be factorized
as �r ,z � f0�= f0�r ,z�= f�r�exp�ikzz�, where f�r� is the solution
of in-plane Hamiltonian equation,

�2��
2

2m�
+

�2kz
2

2m� � f = E0f , �3�

where ��
2 is the Laplace operator expressed in polar coordi-

nates, r= �� ,�, and E0 is the eigenvalue of the Hamiltonian
H0 in Eq. �1�. The corresponding boundary conditions for a
cylinder with circular cross section �right panel of Fig. 1� are
given by

f�a,� = 0, f��,� = f��, + 2�� , �4�

and for semicircular cross section �left panel of Fig. 1� by

f�a,� = 0, f��,0� = 0, f��,�� = 0. �5�

In order to fulfill conditions �4� or �5�, the eigensolutions,
fn,m�� ,�, with quantum numbers n and m are products of
integer-order Bessel functions, Jn�u�, times the correspond-
ing circular eigenfunctions,

fn,m = �An,m
c Jn��n,m

�

a
�ein, n = 0, � 1, � 2,

An,m
sc Jn��n,m

�

a
�sin�n�, n = 1,2, . . . . � �6�

In these expressions, �n,m=��E0 /E0−�z
2� are the mth zero of

the nth-order Bessel function, Jn��n,m�=0, and �z=akz. The
superscripts, c and sc, label the solutions corresponding to
cylindrical and semicylindrical confinements with normaliza-
tion constants An,m

c =1 / �a��Jn+1��n,m�� and An,m
sc

=2 / �a��Jn+1��n,m��, respectively.
The eigenfunctions of the total Hamiltonian H, in Eq. �1�,

are represented by spinors ����� ��+��+�
��−��−� �, where the off-

diagonal contributions mix spin-up and spin-down compo-

nents of Ŝz. They are determined by the 2�2 Schrödinger
equation,

�H0�kz� + H2D�kz� − E H1D�kz� + H3D�kz�

H1D
† �kz� + H3D

† �kz� H0�kz� − H2D�kz� − E ����+�� + �
��−��− � � = 0. �7�

FIG. 1. Quantum wire systems with semicylindrical and cylin-
drical geometric cross sections.
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It is straightforward to show that the functions defined in
Eq. �6� form a complete set of orthonormal eigenstates for
the spaces determined by Hamiltonian �7� with boundary
conditions �4� or �5�. Therefore, we can build each compo-
nent ���� of the spinor ��� as a linear combination of func-
tions given by Eq. �6�,

����,� = �
n,m

Cn,m
� fn,m��,� . �8�

In principle, the above expansion yields infinite generalized
eigenvalue problems for the Hilbert space of Eq. �7�. It be-
comes clear that each Dresselhaus contribution appearing in
H causes different admixtures between the quantum numbers

n and m of the spin-up and spin-down components of spinor
states. As will be shown in Secs. III A and III B, the semi-
cylindrical QWR symmetry imposes restrictive conditions on
the spin-degenerate energy levels and on the corresponding

spin-carrier polarization �Ŝz� of the ground state.

III. ENERGY LEVELS AND SPIN CARRIER
POLARIZATION

We can search for solutions of ���� by direct substitution
of expansion �8� into Eq. �7�. Then, we end up having to
solve an eigenvalue problem, �H− IE�C=0, where H
= �Hs,s�� is an �l� l�-square matrix �the l value accounts for
the convergence of the numerical procedure to solve the
secular equation� with elements given by

Hs,s� =���s
2 + �z

2��s,s� −
1

2
�D�zhs,s� − �D�1

8
js,s�
+ + �z

2gs,s�
− �

− �D�1

8
js,s�
− + �z

2gs,s�
+ � ��s

2 + �z
2��s,s� +

1

2
�D�zhs,s�

� �9�

and C= � C+

C− � is a vector that forms the set of eigenstates of
the matrix in Eq. �9�. The index s represents the set of quan-
tum numbers �n ,m�, ordered in increasing values of �n,m.

The innermost matrix elements gs,s�
� =a�s�k̂��s��, hs,s�

=a2�s�k̂+
2 + k̂−

2�s��, and js,s�
� =a3�s�	k̂�

2 , �k̂+
2 − k̂−

2�
�s�� can be cal-
culated as shown in the Appendix.

In order to simplify the identification of each state admix-
ture induced by the SOI, let us label the components of a
spinor eigenstate as �n ,m ;�� according to the character of
the state at zero BIA interaction given by pure or uncoupled
��=+� or ��=−� spin states with eigenvalues �� /2 along the
quantization z axis, respectively. In the sequence, we will be
discussing the mixing effects that affect energy levels, spin-
splitting energy, and spin polarization caused by the linear,
quadratic, cubic, and full Dresselhaus SOI terms for wires
with cross sections shown in Fig. 1. It is observed, in Eq. �9�,
that under the inversion transformation, kz⇔−kz, we obtain
the same conduction subband mirror states by only changing
spin direction �⇔−�. Hence, in Sec. III A we present the
electronic spectrum for kz	0 only.

A. Cylindrical cross-section confinement

In the absence of SOI the eigenstates of Eq. �3� for cylin-
drical QWRs and with boundary conditions given in Eq. �4�
have eigenenergies En,m=E0−E0�z

2=E0�n,m
2 . These states la-

beled �� �n�,m ;�� are twofold degenerate for the z compo-
nent of the angular momentum n=0 and fourfold degenerate
for n�0. The mixing induced by BIA terms in HD breaks

the spin degeneracy of QWR states in different manners.
Following the calculation given in the Appendix we observe
that the matrix elements of the off-diagonal linear, gs,s�

� , and
cubic, js,s�

� , Dresselhaus terms �see Eqs. �A2� and �A5��
couple states with opposite spins �interspin coupling� with
�n=n�−n= �1 and �n= �3, �1, respectively. However,
the quadratic BIA spin-orbit coupling occurring in the diag-
onal of Eq. �9�, hs,s�, connects those states in Eq. �8� with
�n= �2 �see Eq. �A3�� but inside the same spinor compo-
nent �intraspin coupling� preserving the spin polarization be-
tween coupled quantum numbers �n ,m�. The energy splitting
induced by this quadratic coupling is similar to the Zeeman
splitting induced by a magnetic field; besides, it does not mix
different n-index parities of the Bessel functions entering the
linear combination of Eq. �8�.

According to the present selection rules, the Hilbert space
for the spinors ���r� can be split into two independent sub-
spaces, labeled U and L, which are classified according to the
parity of the quantum number n and spin orientation forming
the components of each spinor. Thus, the Hilbert subspace U
�L� gathers spinor states with spin-up �spin-down� compo-
nents having odd n values �even n values� that are coupled
with states with spin-down �spin-up� and even n values �odd
n values�. Hence, the eigenvalue problem for the Hamil-
tonian in Eq. �7� can be solved independently for each class
of states L and U.

In Fig. 2�a� we are showing effects caused by the BIA
terms on the first 12 eigenvalues of H0 as a function of the
normalized Dresselhaus parameter �D=� / �a3E0� and for a
giving value of the dimensionless wave number �z=kza,
forming the U class eigenstates. Here, the fourfold degener-
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ate levels E�n,m, in the QWR without SOI, split into twofold
degenerate states: En,m

U,�L�⇔E−n,m
L,�U� for U and L Hilbert sub-

spaces.
After the sequential inclusion of linear, quadratic, and cu-

bic BIA terms, we can assert how substantial is the interplay
between these contributions to the electronic structure, as
presented in Fig. 2�b�. However, by considering only the
linear-BIA term without any other contribution, it would not
yield any effective energy coupling to this set of levels. For
the states ��1,1 ;+�, the main contributions are established
by the H2D and H3D BIA Hamiltonians. The same results are
observed for �+2,1 ;−�, whereas �−2,1 ;−� suffers stronger
changes caused by the cubic SOI term, H3D. The H1D SOI
causes practically negligible effect on the eigenenergies,
E��1,1;+�

U and E��2,1;−�
U .

At this point it is interesting to assert the values of energy
spin splitting, for this block of states, induced by the linear,
quadratic, cubic, and all-BIA terms taken independently in
the Hamiltonian of Eq. �7�. Let us label these energy spin-

splitting values as �n,m
�1� , �n,m

�2� , �n,m
�3� , and �n,m. In Fig. 3 we are

presenting the magnitudes of �1,1
�i� and �2,1

�i� for i=1,2 ,3 and
�D=1.7 as a function of the �z and compared to the total
values of �1,1 and �2,1. This picture characterizes the highly
complex interplay between these three contributions. Here,
the stronger influence on �1,1 and �2,1 comes from the qua-
dratic term for �z�0.6 and 0.3, respectively. While, for
lower values of kz ��z smaller than 0.3 and 0.15 for the �1,1�
and �2,1� sates� the predominant contribution is given by the
cubic BIA interaction. Note further that the SOI cubic H3D
term is independent of �z, whereas the linear component H1D
starts to play a non-negligible contribution to the energy
splitting only for large values of kz ��z�kz�.

In order to analyze the induced changes in the spin
character of these subbands, we calculate the cor-
responding spin polarization, defined as �̄z

U,L�n ,m�
= ��n,m

U,L�Ŝz��n,m
U,L� / ���n,m

U,L ��n,m
U,L��, for spinors belonging to sub-

spaces U and L. In particular, the spin polarization of
ground-state levels, �̄z

L�0,1�, is shown in Fig. 4. We have
calculate the contour plot of this quantity for 2m� /�2

=5 Å as a function of the QWR radius and momentum kz.
For wires with radius a�40 Å there is a large �kz� interval,
centered at kz=0, which shows maximum spin polarization,
�̄z

L�0,1�� +1. This interval becomes narrower as the wire
radius increases. Its degenerated mirror state �kz⇔−kz and
�z⇔−�z� belonging to the Hilbert subspace U has spin po-
larization identical to Fig. 4, but with negative �̄z

L�0,1� val-
ues. Therefore, there is no net ground-state spin polarization
for any given value of kz once ��̄z

U�0,1�+ �̄z
L�0,1���0 as

should be expected for this nonmagnetic material.

B. Semicylindrical cross-section confinement

In order to study the effects associated with spatial shape
of the confinement we have used a semicylindrical QWR

FIG. 2. �a� The first 12 eigenenergies E, in units of E0 for a
cylindrical QWR obtained in the subspace U �labeled as �n ,m ;��
according to the zero SOI character� as a function of the dimension-
less spin-orbit Dresselhaus parameter �D=� / �a3E0� and �z=1.6.
Subspace U represents those independent solutions with odd �even�
quantum number n and spin up �down�. �b� Contribution of the
linear �squares�, quadratic �circulus�, and cubic terms �stars� to the
energy of the states n= �1 and �2. Here the solid and dashed lines
denote, respectively, the full BIA Hamiltonian solutions with quan-
tum number n	0 and n�0, respectively.

FIG. 3. Energy splitting �1,1 �solid line� and �2,1 �dashed line�
for a cylindrical QWR in units of E0 as a function of the dimen-
sionless wave vector �z for �D=0.17. The effects of the SOI linear,
quadratic, and cubic BIA terms are indicated by squares, circles,
and stars, respectively.
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with reduced symmetry as compared to the cylindrical case.
We still may label the states according to the character in the
absence of the SOI, namely, �n ,m ;��; however, the solu-
tions now require boundary conditions listed in Eq. �5� and
we want to study how many significant modifications are
introduced on the electronic spectrum and spin character of
the states under this lower symmetry. A first modification is
the twofold degeneracy, with eigenenergies En,m=E0�n,m

2 at
�D=0 �without SOI� for every pair of spin-polarized state
�n ,m ;��, with n�0. From the Appendix, it is seen that the
matrix element for the linear-BIA term, gs,s�

� , couples states
with opposite spins but n�−n= �1 when n� and n assume
odd and even numbers simultaneously �see Eqs. �A7� and
�A8��. The same can be argued for the cubic or interspin,
js,s�
� , and for the quadratic or intraspin, hs,s�, BIA coupling

elements. In this case the Hilbert space for the spinor ��� is
not separable and the spin-up and spin-down components are
formed by all linear combinations of n�0 quantum numbers
for each spin orientation.

In Fig. 5�a�, we have plotted the first ten energy levels of
a semicylindrical QWR, as a function of the dimensionless
parameter �D, for �z=1.6. The mixing induced by HD �see
Eq. �2�� breaks the twofold spin degeneracy of the ground
state �1,1 ;��, a result different from the obtained for 2D
nanostructure states or even in the fully symmetrical cylin-
drical QWRs as shown in Fig. 2�b�. Note that the inclusion
of linear �H1D� and cubic �H3D� BIA couplings does not
break the spin degeneracy of states in semicylindrical wires
but only shifts the energy level positions. Moreover, in Fig.
5�a�, the crossing between energy levels is lacking, when
compared to the cylindrical QWR case, since all the states
are coupled by the SOI. All these facts are direct conse-
quences of the spatial asymmetry: the absence of states with
n�0, the selection of the independent wave functions nec-

essary to describe the semicylindrical QWR spinor state, and
the fact that there are only anticrossings �minigaps� between
two near energy levels.

For a further discussion, we are showing in Fig. 5�b� the
influences of the addition of linear, quadratic, and cubic BIA
terms on the value of the ground-state and first excited state
energies, E�1,1;�� and E�2,1;��. Note that the largest spin split-
ting of the levels E�1,1;�� is induced by the intraspin term
H2D, whereas the interspin term H3D is responsible for the
larger curvature of the state �1,1 ;+�. The same observations
are valid for the excited states �2,1 ;�� but here, the cubic
term is responsible for the strongest modifications. As in the
case of the cylindrical QWR, the contribution from the H1D
term to the energy of all semicylindrical QWR states is neg-
ligible, another remarkable contrast to the effects induced by
SOI linear-BIA term in 2D systems and in quantum dots. It is
possible to demonstrate that the structure of the matrix ele-
ments gs,s� and the js,s�

� , for semicylindrical QWR �see Ap-
pendix�, produces twofold degeneracies of all states and,
thus, the energy splitting �n,m

�1� and �n,m
�3� are identically zero.

This is clearly represented in Fig. 6 where the total values of
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FIG. 4. �Color online� Spin-polarization contours, �̄z
L�0,1�, for

the ground state for a cylindrical QWR with Dresselhaus strength
2m� /�2=5 Å. Here, we changed wavelength kz and radius a of the
QWR.

FIG. 5. �a� The first ten eigenenergies E in units of E0 for a
semicylindrical QWR as a function of the dimensionless spin-orbit
Dresselhaus parameter �D and �z=1.6. �b� Changes caused by the
addition of linear, quadratic, and cubic terms to the energy levels
E1,1;� and E2,1;�. The same notation of Fig. 2 is used. Solid and
dashed lines denote, respectively, the full BIA Hamiltonian solu-
tions with quantum numbers �n ,m ;+� and �n ,m ;−�.
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the spin splitting �1,1 and �2,1 are compared with the split-
ting produced by the quadratic intraspin terms, �1,1

�2� and �2,1
�2�,

for fixed Dresselhaus parameter, �D=1.7, as a function of �z.
The Zeeman-type quadratic contribution from H2D is always
additive, while the H1D and H3D terms, although inducing
mixtures of spinor components, still exhibit a negligible con-
tribution to the energy splitting for any value of the wave
vector kz or any Dresselhaus coupling parameter �D. The
enhancement of the spin-splitting energy is almost linear
with increasing �z�kz, as can be expected from the defini-
tion of the H2D interaction Hamiltonian in Eq. �2�.

The spin polarization of energy levels, �̄z�1,1� ��̄z�n ,m�
= ��n,m�Ŝz��n,m� / ���n,m ��n,m��� is depicted in Fig. 7 as contour
plots of kz versus the radius of semicylindrical QWR, a. As
mentioned, states subjected to SOI are invariant under simul-
taneous inversion operations, kz⇔−kz and �z⇔−�z, being
the mirrorlike images for the ground state shown in Fig. 7.
Thus, according to Figs. 5 and 7, the ground state �1,1 ;−�
has kz�0, while for kz�0 the state with lower energy is
�1,1 ;+�. These states represent electrons that travel freely
along positive �kz�0� and negative �kz�0� z directions,
with average spin polarizations parallel and antiparallel to
the wire axis or, more specifically, �̄z�1,1� ��+kz�
=−�̄z�1,1� ��−kz�

. As it was stated above, the Zeeman-type
H2D intraspin term does not mix spin components of spinor
states but produces the largest spin splitting, �n,m

�2� . The H1D
and H3D interspin terms couple spin-up and spin-down com-
ponents of spinor, thus affecting �̄z�n ,m�, although they pro-
duce exactly no contribution to spin splitting, �n,m

�1� ��n,m
�3�

�0. Therefore, we are able to obtain almost pure spin
ground state for almost all relevant values of the radius a,
which show spin polarization near or larger than 99% in a
broad interval of kz� �−0.02,0.02� Å−1, as shown in Fig. 7.
For the range �kz��0.05 Å and increasing values of a, the

ground states of semicylindrical QWRs exhibit a percentage
increasing mixtures of spin-up and spin-down pure states and
thus, the spin polarizations ��̄z�1,1� reach values below
90% �see Fig. 7�.

IV. SUMMARY AND CONCLUSIONS

The Dresselhaus SOI in semiconductor QWRs shows
strong dependence on the geometry of the confinement and
the BIA-induced effects on the energy eigenvalues, spin-split
energy levels, and spin polarizations that can be tracked for
linear, quadratic, and cubic terms or H1D, H2D, and H3D in
Eq. �2�, respectively. We have studied the importance of con-
sidering full BIA contributions in cylindrical and semicylin-
drical cross-section QWRs. In both cases, the most important
contribution to spin-polarized states, �1,1 ;��, comes from
the H2D term which is responsible for the gap opened be-
tween the twofold spin-degenerate levels. The H3D interac-
tion has particularly significant effects on the excited states
�2,1 ;��. In contrast, the linear-BIA term affects the spin
polarization, �̄z�n ,m�, but has negligible effects to the energy
levels and their spin splitting. Although the intraspin H2D
term vanishes in systems where �k̂z��0 �QW and QD�, for
QWRs the wave vector kz is a good quantum number and its
effect on spin polarization and spin splitting of states be-
comes more significant than the effects produced by H1D and
H3D terms. Moreover, H3D is independent of kz and H1D
depend on kz

2, thus, the effects produced by these interspin
SOI terms may reach similar magnitudes; however the value
of kz where both terms have comparable values will depend
on the state under consideration �see Fig. 3 for the QWR
case�.17 These observations are also dependent on the geom-
etry. Cylindrical QWR ground level is twofold degenerate
with planar angular momentum quantum number n=0 and

FIG. 6. Energy splitting �1,1 �solid line� and �2,1 �dashed line�
for a semicylindrical QWR, in units of E0, as a function of the
dimensionless wave vector �z for fixed �D=0.17. The effect of SOI
quadratic BIA terms is indicated by circles. The linear and cubic
Dresselhaus SOI contributions to the energy splitting are zero.

�0.1 �0.05 0 0.05 0.1
20

40

60

80

100

kz �Å�1�

ra
di

us
�Å
�

�1

1

�0.99

�0.6
0.6

0.99

�0.1 �0.05 0 0.05 0.1
20

40

60

80

100

kz �Å�1�

ra
di

us
�Å
�

�1

1

FIG. 7. �Color online� Spin-polarization contours �kz versus ra-
dius a�, �̄z�1,1�, for the ground-state for a semicylindrical QWR
with Dresselhaus strength 2m� /�2=5 Å. For kz�0 �kz�0� the
ground state corresponds to the state �1,1 ;−� ��1,1 ;+��.
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m=1, whereas the semicylindrical QWR symmetry, fulfilling
the boundary conditions in Eq. �5�, forbids the presence of
states with n�0. Therefore, under this geometry neither H1D
nor H3D contributes to the energy spin splitting besides leav-
ing the states twofold degenerate. As seen in Fig. 5�b�, their
effects produce only small shifts to the energy levels.

Finally, the spin polarization of ground states of a semi-
cylindrical QWR, �̄z�1,1�, is qualitatively different from the
cylindrical case due to different contributions induced by
Dresselhaus SOI. For any level, there is not spin-degeneracy
for a fixed value of kz in contrast to the cylindrical case
where there are always twofold spin-degenerate levels at any
fixed value of kz, regardless its propagation direction ��z�.
The semicylindrical confinement has given rise to an energy
splitting of twofold degenerate levels of QWRs produced by
the H2D term, a dominant process that preserves spin polar-
ization at small values of kz. This opens the possibility of
using low velocity �vz= ��kz /m�� transport measurements
to explore preferential spin channels according to the sign
�propagation direction� of induced spin-polarized currents in
these quasi-1D nanostructures. Moreover, using this peculiar
symmetry for the ground state in semicylindrical QWRs we
can expect the formation of robust spin-filter devices. If elec-
trons with energy E /E0�17 are injected along the z axis of
semicylindrical ensemble of parallel QWRs, this device can
only transmit a high degree of spin-up current in direction +z
and opposite spins in the −z direction. A dominant spin-up or
spin-down character of the current depends on the sign of the
�̄z, and the current density is directly linked to the interplay
between the radius a and the wave vector kz, as seen in Fig.
7. The ratio 2m� /�2=5 Å, used in Fig. 7, corresponds to
totally realistic values for InAs semiconductors.18 For cylin-
drical radius 30�a�60 Å and 0�kz�0.5 Å−1, it is pos-
sible to get more than 90% degree of spin-polarized currents
in the independent spin-up and spin-down channels. These
results are based solely on the spatial symmetry properties of
the quasi-one-dimensional nanostructures and enable realiza-
tion of spin filters and tuned spin-polarized current densities
in both parallel QWR directions. Also, combination of par-
allel wires may be used to generate logical gates, necessary
for quantum information transmission and spintronic de-
vices.

It is worth commenting on another SOI contribution pro-
voked by the structural inversion asymmetry in nanostruc-
ture, the so-called Rashba interaction. The Rashba spin-
splitting Hamiltonian, HR=�k��V ·�,19 in a material with
coupling parameter � is associated to spatial asymmetries of
the lateral confinement potential, V�x ,y�. This contribution is
linear on k components and presents the same mathematical
structure as the H1D term. It is clear that eigenstates of H0
+HR are also eigenstates of H0+H1D. The effect of this term
adds to the linear Dresselhaus SOI, �for more detailed dis-
cussion see Ref. 11�. For fixed SO-coupling constant, the
spin splitting induced by H1D is positive �see Figs. 3 and 6�,
whereas for HR the splitting �n,m

�1� has negative values. There-
fore, the net effect of H1D+HR is to minimize the contribu-
tion from H1D and decrease the values of �n,m

�1� .11 Moreover,
the efficiency of the proposed spin-filter devices should de-
cline for high impurity concentration or under strong current
density injection where the electron-electron interaction be-

comes important. The validity of our proposition is directly
linked to the conservation of the wave vector kz. In this
sense, these two effects break translational invariance along
the z axis and the single-particle problem based on kz con-
servation would require another formulation.
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APPENDIX: SPIN ORBIT TERMS

The matrix elements gs,s�
� , hs,s�, and js,s�

� are necessary in
order to build the Hamiltonian matrix �9� for the BIA SOI. In

polar coordinates the operators k̂� are written as

k̂� = − ie�i� �

��
�

i

�

�

�
� . �A1�

1. Cylindrical confinement

Using the wave functions �Eq. �6�� it is straightforward to
show that

gs,s�
� = a�s�k̂��s�� = � 2iTn�,m�

n,m �n�,n�1, �A2�

where s= �n ,m� and s�= �n� ,m��,

hs,s� = a2�s�k̂−
2 + k̂+

2�s��

= 4��n + 1��n�,n+2 − �n − 1��n�,n−2�Tn�,m�
n,m , �A3�

with

lim
n��1

	��n + 1�Tn�2,m�
n,m 
 = 2�n,m

2 �m�,m, �A4�

and for the cubic contribution we have

js,s�
� = a3�s�	k̂�

2 ,�k̂+
2 − k̂−

2�
�s�� = � iTn�,m�
n,m 	2�n�m�

2 �n�,n�1

+ �4�n� � 1��n� � 2� − �n�m�
2 ��n�,n�3
 , �A5�

where

Tn�,m�
n,m =

�n,m/�n�,m�

��n,m/�n�,m��
2 − 1

. �A6�

2. Semicylindrical confinement

Following Eq. �6� for the semicylindrical case we have
that

gs,s�
+ = i sgn�n − n��Tn�1,m�

n,m , if n� = n � 1, �A7�

SPIN POLARIZATION IN QUANTUM WIRES: INFLUENCE… PHYSICAL REVIEW B 79, 155306 �2009�

155306-7



gs,s�
+ =

2n

�s��

1 + �− 1�n+n�

Jn�+1��s��Jn�+1��s�
Fn�,m�

n,m , if n� � n � 1,

�A8�

where sgn�x�= +1 if x�0 and sgn�x�=−1 if x�0 and Fs�
s are

numbers ruled by

Fs�
s = �

0

�s�
zJn� �s

�s�
z� Jn�−1�z�

�1 − n��2 − n2 −
Jn�+1�z�

�1 + n��2 − n2�dz .

�A9�

In the particular case where s=s� Eq. �A9� can be reduced to

Fs
s =

2n

�2n�2 − 1
�

0

�s �z
d

dz
�Jn�z��2 + �Jn�z��2�dz

=
2n

�2n�2 − 1
�

0

�s d

dz
	z�Jn�z��2
dz = 0. �A10�

Also, it follows the relation

gs,s�
− = �− 1�n�+n+1gs,s�

+ . �A11�

The other matrix elements for the semicylindrical QWR, hs,s�
and js,s�

� , are evaluated numerically using Eqs. �A7�–�A11�
and the matrix identity �s�ÂB̂�s��=�p�s�Â�p��p�B̂�s��.
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